Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Pharmaceutics ; 13(4)2021 Mar 27.
Article in English | MEDLINE | ID: covidwho-1238930

ABSTRACT

The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host's in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.

2.
Nanomedicine (Lond) ; 16(14): 1187-1202, 2021 06.
Article in English | MEDLINE | ID: covidwho-1226939

ABSTRACT

Aim: To formulate an aerosolized nanoliposomal carrier for remdesivir (AL-Rem) against coronavirus disease 2019. Methods: AL-Rem was prepared using modified hydration technique. Cytotoxicity in lung adenocarcinoma cells, stability and aerodynamic characteristics of developed liposomes were evaluated. Results: AL-Rem showed high encapsulation efficiency of 99.79%, with hydrodynamic diameter of 71.46 ± 1.35 nm and surface charge of -32 mV. AL-Rem demonstrated minimal cytotoxicity in A549 cells and retained monolayer integrity of Calu-3 cells. AL-Rem showed sustained release, with complete drug release obtained within 50 h in simulated lung fluid. Long-term stability indicated >90% drug recovery at 4°C. Desirable aerosol performance, with mass median aerodynamic diameter of 4.56 ± 0.55 and fine particle fraction of 74.40 ± 2.96%, confirmed successful nebulization of AL-Rem. Conclusion: AL-Rem represents an effective alternative for coronavirus disease 2019 treatment.


Lay abstract Remdesivir is one of the first drugs approved for the treatment of coronavirus disease 2019. Currently, it is administered via an injection into the bloodstream. This means that the drug circulates around the entire body and only a limited amount reaches the diseased site ­ the lungs. Frequent dosing is therefore required, which needs expert personnel and multiple hospital visits and can result in serious side effects. In this study, the authors developed specialized, nanosized particles containing the drug remdesivir that can be administered directly into the lungs. This could drastically minimize side effects, enhance efficacy and allow easy self-administration at home. The results of the study are promising but require additional investigation.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , Drug Carriers , A549 Cells , Adenosine Monophosphate/administration & dosage , Administration, Inhalation , Aerosols , Alanine/administration & dosage , Delayed-Action Preparations , Drug Liberation , Humans , Liposomes , Nanoparticles , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL